段铁梁
作者简介:段铁梁,中国煤田地质总局,教授级工程师,矿产储量评估师。
自从《固体矿产资源/储量分类》(GB/T 17766—1999)、《固体矿产地质勘查规范总则》(GB/T 13908—2002)国家标准和《煤、泥炭地质勘查规范》(DZ/T 0215—2002 以下简称新规范)发布实施以来,对指导和规范煤炭资源勘查、开发和管理起到了积极的推动作用,但实际工作中对于早于发布实施的《煤田地球物理测井规范》(DZ/T 0080—93)和《煤炭煤层气地震勘探规范》(MT/T 897—2000)的执行和配套,尤其是在市场经济条件下仍存在一些问题。为了更好地理解和执行新规范及相关文件精神,笔者根据对新规范和有关物探规范的学习理解,结合近年对矿产资源/储量评审工作的实践,谈几点对有关物探规范实施中的认识和体会,与同仁们商榷。
1 关于煤田地球物理测井规范的实施
1.1 测井参数方法
煤田地球物理测井规范要求至少测量4种物性参数,应该特别指出物性参数是指针对岩石物理性质的参数,井径、井温、井液电阻率等不是物性参数。一般常用的物性参数是视电阻率、自然电位、自然伽马和散射伽马,也可根据需要将自然电位换成声波速度。目前数字测井中视电阻率可以换成三侧向电阻率。这些参数一般情况下可以满足对煤岩层的定性、定厚解释;但如果需要也可以再增加其他参数,例如,若要与地震配合或者研究岩石的力学特征,必须测量声波参数;若要研究地层的孔隙特征,可加测中子-中子等方法;而要解决煤矿三带的划分,则应进行声波成像测井。
如果不是同时测量多种参数的组合测井,各种方法中一般应先测量自然电位。
对于含水层的富水性解释,一般依据视电阻率、自然电位、自然伽马,这些方法主要是对岩性进行解释,从而推断地层的富水性;但是如果是专门水文测井这些参数是不够的,必须进行扩散法测井或者流量测井等专门的水文测井,以研究含水地层的某些水文地质特征和参数。
1.2 工程测井
(1)井斜测量是确定煤层空间位置的重要方法,大于100m的钻孔必须测井,否则测井本身的质量就不能保证;而且,必要的检查点和加密点也是影响质量的重要原因。井斜测量一般采用点测,且应该自上而下测量,以保证成果的真实性。
(2)井径测量是鉴别散射伽马曲线是否存在似煤异常的重要方法,尽管该方法不是物性参数,但应该尽可能进行测量。
(3)地温测量是确定开采技术条件的重要方法,一般应该在详查阶段对约总钻孔数量1/2的钻孔进行简易测温;钻孔的布置应选择深部、主要构造部位(如向斜轴部、断层附近等);在初步确定为地温异常区时,应适当安排近稳态测温钻孔,以确定恒温带的深度和温度,求取时间校正关系曲线,从而计算地温梯度;若为地温正常区,可不进行近稳态测温,勘探阶段一般也可不安排地温测量,或在可能存在高温的区域适当安排少量钻孔进行简易测温。
1.3 采集质量控制
主要应该重视以下几方面:
(1)所有的数字测井均应做好监视记录,监视记录(或回放曲线)的要求应该按照模拟曲线的要求,煤层要保证有相应的幅度、曲线要检查是否有畸变和周波跳跃,从而进行现场解释和对测井质量进行验收。
(2)测井的电缆提升速度,也是应该注意的问题,一味追求测井速度和效率,难以保证测井质量。
(3)仪器的刻度和井场检查,是保证仪器工作性能和进行半定量解释的基础,按照规范要求进行必要的工作,这是测井必须进行的日常工作。
(4)光电玛轮的传送误差也应该引起注意,否则就会产生深度误差,影响测井成果的可靠性。
1.4 测井地质成果和应用
对于数字测井,一般可以在以下几方面获得应用(其中后三项是数字测井的优势):
(1)岩性解释;
(2)煤层的定性、定厚;
(3)煤岩层对比;
(4)断层破碎带的解释;
(5)煤层炭灰水分析;
(6)岩层砂泥水分析;
(7)岩石力学性质计算。
应该指出,煤层炭灰水分析和岩层砂泥水分析目前仍然处于试验阶段,准确进行定量计算,达到实际应用仍需进一步研究和一定过程;但是岩石力学性质计算尽管也存在横波速度是按经验公式推断的问题,但因化验室测试值变化范围较大,测井确定的强度指数经过与测试结果进行相关分析,在煤层顶底板稳定性评价中已经获得实际应用,对于煤层顶底板变化较大和稳定性较差的地区,进行岩石力学性质计算是很有意义的。
1.5 地质报告的编写内容
1.5.1 煤岩层物性特征
阐述区内不同时代地层煤层和主要岩层物性特征,总结其规律。可以用表格或插图表示并配以文字说明。
1.5.2 仪器设备
本次与以往各阶段使用的仪器设备及相应的技术参数,仪器刻度及校验情况,井场刻度检查情况,可以列表或文字说明。
1.5.3 采用的参数方法
阐述本次与以往各阶段使用的参数方法,包括定性、定厚参数方法,以及其他测井方法(如扩散法、流量测井、井径、井温等)。
1.5.4 定性、定厚解释
煤层、断层、岩层定性解释原则,煤层定厚解释点选择原则,总层数(可采与不可采层);如果以往各阶段解释原则与本次不同,应加以说明。
1.5.5 工作量及质量
本次与以往各阶段的工作量(包括孔数、实测米、条件米,扩散法、流量测井、井径、井温、井斜等其他测井或特殊测井的孔数和必须的说明性图件),全孔测井质量和煤层质量(可分阶段说明)。除文字说明外,应附必要的表格。
1.5.6 煤岩层对比
说明标志层、组合地层的典型物性曲线特征(附插图),不同时代地层的典型物性曲线特征(附插图),以及其他对比依据。
1.5.7 成果应用
详细说明测井的地质效果和测井解释的煤层、含水层、断层等在地质报告中的应用情况。
1.5.8 存在问题与建议
说明测井质量、应用等方面存在的问题,尤其是在钻孔中发生放射源掉落事故时,应详细说明放射源的种类、活度、半衰期、包装情况,以及事故孔的孔号、掉落深度和事故发生时间。
附图:本阶段所有钻孔的测井综合柱状图、煤层炭灰水和地层砂泥水解释成果图、扩散法曲线图、流量测井图、测井曲线对比图(可附30%钻孔)、地温成果图以及其他必要的图件。
以往阶段部分钻孔的测井综合柱状图、测井曲线对比图(可附少量钻孔)、地温成果图以及其他必要的图件。
2 关于煤炭煤层气地震勘探规范的实施
2.1 试验工作
由于各矿区地震地质条件变化较大,试验工作是地震勘探过程中必不可少的内容,是该区是否能够取得良好地质效果的关键。试验的内容主要包括:
(1)激发条件的选择。井深、药量、激发井组合方式。其中前两者比较重要。
(2)接受因素选择。观测系统(排列长度、叠加次数、偏移距、接受线炮线数量)、检波器道距和组合方式、地震数据采集的仪器因素等。
(3)波场调查。干扰波、环境噪音等。
实验应有明确结论。
2.2 资料采集
(1)仪器的年、月、日检。
(2)按试验结果确定的激发和采集因素进行施工,并进行必要的检查。
(3)测线或线束施工后的现场处理,是指导进一步生产的依据,也是提高采集质量的必要条件。现场处理后如果地质效果较差,应根据需要进行必要的补充试验,以保证取得较好的地质效果。
(4)测量工作。
(5)应确定保证质量的措施,并具体实施。
2.3 资料的处理与解释
(1)确定正确的处理流程和参数,选择合适的处理模块。处理后的时间剖面应有较好的信噪比,主要煤层反射波应有较好的连续性,以便在全区进行追踪对比。
(2)以时间剖面为主,配合各种切片进行解释,以获取各地质成果;在断层组合时,要充分了解施工区的地质情况,按照地质规律进行合理的组合。
2.4 主要地质成果
(1)煤层底板起伏形态,提交主要煤层的底板等高线图。
(2)煤系上覆底层和基底起伏形态。
(3)构造形态,断层、褶曲和陷落柱的解释或组合。
(4)主要煤层露头和采空区。
(5)煤层厚度变化趋势和煤层分布范围。
2.5 地质报告对地震资料的使用
煤层底板起伏形态、煤系上覆底层和基底起伏形态、断层、褶曲和陷落柱,可以结合钻孔资料直接予以利用,但根据地质任务和不同勘探阶段对断层控制的要求,对小断层进行合理取舍。应该指出,地震组合断层的可靠程度和地质上的断层查明程度不是一个概念,地震组合断层的可靠程度仅依据断点的级别,不考虑断层的延伸长度和落差,而地质则是综合分析的结果;如对于三维地震勘探组合的断层,断点数量很多,较大规模的断层即使是较可靠的也可能是查明断层;然而为地震勘探受工程网度的限制,可能一个可靠断层仅有2~3个断点,此时的可靠断层则不一定是查明断层。报告编制时应该进行综合分析和合理判断。由于地震勘探在煤层埋深较浅时效果较差,对于浅部的露头和采空区可靠程度较差,应用时应慎重。
煤层厚度的解释目前是地震勘探的研究课题,其解释精度(一般在0.5~1.0m之间)达不到地质勘探规范要求,不能用于资源量估算。但所确定的煤层厚度变化趋势可供地质人员参考;而无煤区边界尽管是视边界,但仍有一定的意义,可以结合钻探采用内插法确定无煤区范围,综合分析使用。
2.6 地质报告的编写内容
2.6.1 地震地质条件
阐述区内表、浅、深层地震地质条件。地震反射波的地质含义及对比。
2.6.2 数据采集
(1)试验结论(激发因素、观测系统、仪器因素)。
(2)工作量及其质量(含以往)。
2.6.3 数据处理
(1)数据处理流程及参数选择。
(2)处理剖面的数量、质量和分布(含以往)。
2.6.4 资料解释
各类地质成果的解释原则,断层的组合方法。
2.6.5 地质成果
(1)煤层底板起伏形态。
(2)煤系上覆底层和基底起伏形态。
(3)断层、褶曲和陷落柱,断层和陷落柱数量、分类和可靠性评价(含以往)。主要断层应附插图。
(4)主要煤层露头和采空区。煤层厚度变化趋势和煤层分布范围。
2.6.6 存在问题与建议
说明质量、应用等方面存在的问题。
附图:典型事件剖面、主要煤层底板等高线图、构造纲要图(含勘探前后变化)以及其他必要的图件。
参考文献
固体矿产资源/储量分类(GB/T 17766—1999).北京:中国标准出版社,1999.
固体矿产地质勘查规范总则(GB/T 13908—2002).北京:中国标准出版社,2002.
煤泥炭地质勘查规范(DZ/T 0215—2002).北京:地质出版社,2003.
煤田地球物理测井规范(DZ/T 0080—93).北京:地质出版社,1993.
煤炭煤层气地震勘探规范(MT/T 987—2000).北京:煤炭工业出版社,2000.
市政或者公路工程中有相关规范定义淤泥?以及淤泥中的泥炭?
问题一:什么叫泥炭?用它来种花有什么好处? 泥炭又称草炭、泥炭土、黑土、泥煤,通常分为高位泥炭和低位泥炭两种。高位泥炭是由泥炭藓、羊胡子草等形成,主要分布在高寒地区,我国东北及西南高原很多。高位泥炭含有大量的有机质,分解程度较差,氮和灰分含量较低,酸度高,pH值约为6―6.5或更酸。低位泥炭是由低洼处、季节性积水或常年积水地方生长的需要无机盐养分较多的植物如苔草属、芦苇属和冲积下来的各种植物残枝落叶多年积累形成的。我国西南、华中、华北及东北有大量的分布。低位泥炭一般分解程度较高,酸度较低,灰分含量较高。低位泥炭常因产地不同而品质有较大差异。
泥炭是一种相当优良的盆栽弗卉用土。因为它含有大量的有机质,疏松,透气透水性能好,保水保肥能力强,质地轻,无病害孢子和虫卵。目前国外园艺事业发达国家,在花卉栽培中,尤其是在育苗和盆栽花卉中多以泥炭作为主要盆栽基质,而腐叶土、腐殖土等早已成为过去。近几年来,泥炭在广东开始普及。在肇庆、增城等地有生产和销售泥炭。
泥炭在形成过程中,经过长期的淋溶,以及本身分解程度差,所以本身所含的养分少,在配制培养土时可根据需要加进足够的氮、磷、钾和其它微量元素,或在栽花过程中及时给予追肥补充。泥炭可单独用于盆栽,也可以和珍珠岩、蛭石、河沙、椰糠等配合使用。目前市面上有售的所谓花卉培养土,其主要成分就是泥炭。
问题二:自己怎么找到泥炭土? 泥炭土又名草炭土,它是一种天然矿产资源。以东北三省生产为主,一般都需要开采。
泥炭土只能购买获得,泥炭土可按袋或吨。
它是一种纤维物质具有保水、透气性、营养均衡适合作用育苗基质使用。
辽宁清原泥炭土加工厂 回答。下面为泥炭土实物图片!
问题三:泥炭土和泥土的区别 泥炭土(peat soil)是指在某些河湖沉积低平原及山间谷地中,由于长期积水,水生植被茂密,在缺氧情况下,大量分解不充分的植物残体积累并形成泥炭层的土壤。
泥土即土壤,是地球陆地表面具有一定肥力能够生长植物的疏松表层。它是岩石的风化物在生物、气候、地形等因素的综合作用下形成和发展的。
泥炭土由于透气性好,常用于花卉的培育,养护。而普通的泥土达不到这样的要求。
泥炭地可分为水藓泥炭地和沼泽泥炭地,这两类泥炭地的主要区别在于泥炭地形成的条件不同。泥炭土[1] 是具有厚度>50cm的泥炭层的潜育性土壤,多分布于冷湿地区的低洼地。地表可有厚20-3Ocm的草根层,草根层下为泥炭层和矿质潜育层,有时泥炭层下还有腐殖质过渡层。泥炭土土类划分3个亚类,本区均有分布。低位泥炭土亚类分布于低湿地,其造炭植物属富营养型,主要为灰分含量较高的苔草类草本植物,泥炭层有机质含量多为30-70%,pH值6.0-7.0;中位泥炭土亚类属过渡类型,零星分布于山地森林中的沼泽化地段,造炭植物为中营养型的乔木及莎草、泥炭藓等,有机质含量50-80%,pH值5.0-6.7;高位泥炭土亚类属贫营养型,造炭植物主要为泥炭藓,水分靠大气降水补给,泥炭层有机质含量60-90%,pH值4.0-5.0,零星分布于山地的阴湿地段,面积也不太大。
土壤的组成包括矿物质、有机质、水分和空气四种物质。土壤的主要特征是具有不断地供给和调节植物生活中所需要的水分、养分、空气和热量的能力,即土壤肥力。肥沃的土壤能够使水、肥、气、热条件达到稳、均、足、适的程度,并且能在一定程度上抵抗恶劣自然条件的影响,适应植物生长的需要。自人类开创农业以后,土壤即是农业生产的基本生产资料之一。
问题四:泥炭土和草炭土的区别是什么 泥炭土即草炭土,是古代低温、温地的植物遗体,被埋在地下、经数千万年的堆积,在气温较低、雨水少或缺少空气的条件下,植物残体缓慢分解而形成的特殊有机
物,多呈棕黄色或浅褐色。我国北方地区分布部较多,南方地区只在一些山谷低洼地表土下有零星分布。它是一种很好和栽培基质。
草炭的学名为泥
炭,草本泥炭俗称草炭,是五千乃至一万年以前低洼地上,植物年复一年枯死,呈半腐烂状态,逐年堆积而成的有机质矿体。草炭是地表沼泽环境中的植物遗体,在
大气氧和微生物(喜氧细菌)的作用下,其中的有机物正部分(如纤维、木质素等)经过氧化合分解作用,一部分被彻底破坏成气体和水分,一部分转化成较简单的
有机化合物,而未分解的部分,继续保留在沼泽中。随着植物遗体的不断分结合堆积,堆积物的下部由氧化环境逐渐变为弱氧化甚至还原环境,经过氧化分解和水解
作用,早期产物转变成一种新的多水的富含腐殖酸的腐殖物质即是草炭。
形成草炭的主要植物是泥炭藓、冰藓、苔草和其他水生植物。根据草炭形成的地理条件、植物种类和分解程度,可分为低位、高位和中位草炭三大类。
高位草炭:为温带高纬度植物埋在地层下经长期堆积炭化而形成。以羊胡子草属、水藓属植物为主,分解程度较低,氮和灰分元素含量少,酸性较强,PH值在4
至5之间。容重较小,吸水透气性好,一般可吸持水分为其干重的10倍以上,适合作无土栽培基质,但PH值必须调至5.5至6.0左右,也能用于配制培养
土。
低位草炭:分布于低洼积水的沼泽地带,以生长需要无机盐分较多的苔草属、芦苇属植物为主,以及冲积下来的各种植物残枝落叶,经漫长时间的
积累形分解成度较高,氮和灰分元素含量较多酸性不强,肥分有效性较高,风干粉碎后楞直接作肥料使用。因其容重大,吸水和通气性较差,不宜单独作栽培基质。
中位草炭:为介于两者之间的过渡性草炭,性状也介于二者之间,既可用于无土栽培,也楞用于配制培养土。
草炭具有保水性,透气性,载体作用,改良土壤等,草炭含有丰富的腐植酸,是纯天然的有机物,无毒无菌。草炭还含有丰富的氮、磷、钾等。
草炭在园艺用处较多,如建植标准草坪、建造屋顶花园花卉、蔬菜育苗、盆花生产等。
问题五:泥炭土和草炭土的区别是什么 泥炭土即草炭土。泥炭,又称黑土、草炭,是古代低温、温地的植物遗体,被埋在地下、经数千万年的堆积,在气温较低、雨水少或缺少空气的条件下,植物残体缓慢分解而形成的特殊有机物,多呈棕黄色或浅褐色。我国北方地区分布部较多,南方地区只在一些山谷低洼地表土下有零星分布。它是一种很好和栽培基质。
形成泥炭的主要植物是泥炭藓、冰藓、苔草和其他水生植物。根据泥炭形成的地理条件、植物种类和分解程度,可分为低位、高位和中位泥炭三大类。
1,高位泥炭:为温带高纬度植物埋在地层下经长期堆积炭化而形成。以羊胡子草属、水藓属植物为主,分解程度较低,氮和灰分元素含量少,酸性较强,PH值在4至5之间。容重较小,吸水透气性好,一般可吸持水分为其干重的10倍以上,适合作无土栽培基质,但PH值必须调至5.5至6.0左右,也楞用于配制培养土。
2,低位泥炭:分布于低洼积水的沼泽地带,以生长需要无机盐分较多的苔草属、芦苇属植物为主,以及冲积下来的各种植物残枝落叶,经漫长时间的积累形分解成度较高,氮和灰分元素含量较多酸性不强,肥分有效性较高,风干粉碎后楞直接作肥料使用。因其容重大,吸水和通气性较差,不宜单独作栽培基质。
3,中位泥炭:为介于两者之间的过渡性泥炭,性状也介于二者之间,既可用于无土栽培,也楞用于配制培养土。
问题六:东北泥炭土是什么 泥炭土也叫草炭土只有东北产,是天然的矿物质营养原料。泥炭土是非海理想的育苗基质、营养土的原料。
泥炭土透气性好、持水量高、质轻,营养土均衡。
辽宁清原泥炭土加工厂 回答。
问题七:泥炭土有营养吗 泥炭土营养很少,主要作为土壤调理剂和肥料增效剂使用。
问题八:泥炭土是什么土 泥炭土又名草炭土,它是一种天然矿产资源。以东北三省生产为主,一般都需要开采。
泥炭土只能购买获得,泥炭土可按袋或吨。
它是一种纤维物质具有保水、透气性、营养均衡适合作用育苗基质使用。
问题九:泥炭土是什么 泥炭土的形成与用途 种花为什么要选择 种花的泥土配制方法: 1、一般的花卉培养土多为中 性或偏酸性, 常用的培养土配置比例为 腐叶土(或泥炭土) :园土:河沙:骨粉=35:30:30:5,或者腐叶土(或泥炭土) 、素面沙 土、腐熟有机肥料、过磷酸钙等按 5:3.5:1:0.5 混合过筛后使用。2、用于培养山茶、杜鹃等喜酸性花木,可掺入约 0.2% 硫磺粉。3、培养仙人球等耐干旱、瘠薄花卉,可加入约 10%左右石灰墙剥落下来的墙皮土等。
泥炭的主要组成及性质
土石方分为土方和石方,你似乎两者分不清。松土是属于一类土,淤泥是属于土方,一般在造价中将其并入一或二类土,只是在机械人工费中上浮一定百分比,因为淤泥开挖的时候难度较一般土壤难。而软石、次坚石、坚石是属于石方,软石又叫松石,极限压碎强度为小于200KG/CM2,次坚石是200-400,400-600,600-800,根据不同的情况来划分,坚石是分普坚石与特坚石,具体的你可以查以下《计价表》,上面有详细划分的。
泥炭是泥炭化作用的最终产物,在从植物残体转化成煤的总进程中,它又构成成煤作用的中间产物。在泥炭的组成中,除含有大量水分外,还含有复杂的固态有机组分和无机组分。
一、泥炭的化学组成
泥炭的化学组成,除含有大量水分外,还包括有机质和矿物质。
1.泥炭的有机质
泥炭的有机质主要包括未完全分解的植物残体和腐植质。有机质的含量是指有机质占泥炭干物质总量的百分比。在我国的泥炭资源中,多以富营养草本泥炭为主,有机质含量一般为50%~70%,也有少数低于50%。其他类型泥炭,如草本藓类和木本草本藓类泥炭,其有机质含量一般为70%~30%泥炭藓泥炭的有机质含量为80%以上,有的高达90%以上。
植物残体的类型、泥炭的积累时间和泥炭的分解程度的不同致使泥炭有机质中碳、氢、氧、氮、硫等元素含量高低不同。
碳是泥炭有机质中主要的组成元素,其含量多在50%~60%,最高可达65%以上。一般木本泥炭的碳含量较高,草本泥炭次之,藓类泥炭较低,这主要与形成泥炭的植物含碳量变化有关。碳的聚集是在沼泽环境下,由于微生物作用,使植物残体进行缓慢的缩合、脱水和脱羟基的生物化学作用的结果。
氢在泥炭有机质中的含量主要和泥炭的类型有关,一般变化于4.7%~7.5%之间,由贫营养泥炭至富营养泥炭,氢的含量减少。
氧在泥炭有机质中的含量为30%~40%,含量的高低主要受形成泥炭的植物及其分解程度的影响。
氮含量的高低及其存在的形态,主要与泥炭类型有关。富营养泥炭氮含量较高,一般为1.5%~3.5%,且以蛋白氮和杂环氮为主,占全氮的91.9%,富营养泥炭中草本泥炭氮含量高于木本泥炭贫营养泥炭氮含量较低,一般为0.8%~1.2%。
硫在泥炭有机质中的含量比其他各种固体可燃矿产都低,平均含量为0.3%,最高0.66%,最低0.08%。一般硫含量在贫营养泥炭中较低,在富营养泥炭中较高。
泥炭有机质的有机组分组成较为复杂,主要包括有机溶剂(如苯、苯醇(1∶1)、氯仿等),从泥炭中萃取出的物质,统称为类脂或沥青用热水从泥炭中提取的物质为水溶物,在无机酸中存在的经水解后溶解的物质为易水解物。泥炭中有机质内的水溶物主要包括单糖类和有机酸等溶于水的有机化合物,一般含量较低。易水解物主要包括半纤维素,它是由低聚糖和糖醛类物质组成的。难水解物主要为纤维素,是由大量葡萄糖基构成的链状高分子化合物。泥炭有机质中不水解的残余物,即不水解物主要包括木质素、角质和木栓类物质。
在泥炭有机质中,以稀碱溶液从泥炭中提取的物质,称为腐植酸,它是泥炭的特征组分。腐植酸不是单一的有机化合物,而是一组由相似且分子大小各异、结构不同的羟基芳香羧酸所组成的复杂混合物。腐植酸在泥炭有机质中含量较高,一般在泥炭干物质中占20%~40%,有的高达50%以上。木本植物形成的泥炭腐植酸含量为40%左右,草本泥炭含量为30%~40%,藓类泥炭含腐植酸最低,一般少于20%。根据在不同溶剂中的溶解度和颜色,通常又将用碱液直接提取出的腐植酸分成溶于酸的部分,称为黄腐酸(或称富里酸)溶于丙酮或乙醇等溶剂的部分,称为棕腐酸最后沉淀的部分,称为黑腐酸。由于泥炭类型的不同,因而使这些不同组分的腐植酸含量不同。
2.泥炭的矿物质
泥炭矿物质也是泥炭物质组成的重要部分。矿物质的来源,一方面是在水、风和其他动力的作用下,使矿物质运移到泥炭中并聚集起来,另一方面则是来源于形成泥炭的植物体本身。
地下水、河流及湖泊水、地表径流、冰雪融水及大气降水等是促使矿物质在泥炭中聚集的最活跃因素,流水所携带的各种矿物质通过机械沉积作用、化学沉淀作用、交换吸收及物理吸附等作用,可转化成泥炭的组分。风可以将大量细小的矿物颗粒带入泥炭中。一些有火山活动的地带,火山灰也是泥炭矿物质的来源,由于泥炭沼泽受发育部位、火喷出物的数量和次数等因素的影响,因此矿物质存在的状态均不相同。有的可聚集成层状,与泥炭层相间互层有的则呈分散状,这种赋存状态多出现于距火山活动较远和火山物质喷出量较少的泥炭沼泽中。火山灰的混入,不仅增加了泥炭矿物质的含量,而且可以改变泥炭沼泽形成营养丰度少的状况。
水、风及其他动力来源的泥炭矿物质,不仅在数量上构成泥炭中无机质的主要部分,而且它们的形成和特征受许多沉积环境因素的控制。常见的有氧化物、氢氧化物、碳酸盐类等在无机矿物中,最常见的有石英、次生黏土矿物。
贫营养泥炭的矿物质,除少量来自大气降水和风力作用外,主要来源于植物本身,因而泥炭灰分含量较低。富营养泥炭灰分含量较高,一般为10%~40%,最高可达70%。
在泥炭的灰分组成中,元素种类众多,主要有硅、钙、镁、铁、铝、钾、钠等。一般硅含量占优势,其次是铁、铝或钙、镁的含量,钾、钠元素更少。由于泥炭的类型、水源补给特征、周围岩性及氧化还原条件等的差异,泥炭灰分组成在结构、含量上均不相同。
泥炭矿物质除含有以上元素外,还含有很少的微量元素。由于泥炭的特性及其形成环境的影响,使得泥炭中的微量元素含量很低,一般为(1~500)×10-6。在自然状态下,泥炭中的微量元素多呈低价态,因此活性强,易被强烈淋失。微量元素含量往往与泥炭灰分含量呈正相关关系。泥炭形成发育的类型不同,其微量元素含量也不相同。
二、泥炭的主要物理、化学特性
泥炭的性质反映出泥炭形成和演化的环境,它直接或间接地反映了泥炭的化学组成,这对评价泥炭的加工利用有重要的意义。
1.分解度
泥炭的分解度是指植物残体内由于腐解作用而失去细胞结构物质的相对含量,即泥炭中无定形腐植质占有机质的百分含量。分解度是表示泥炭分解的强度,在一定程度上反映出泥炭化作用的程度,因此,它是评价泥炭质量及加工利用方向的重要依据之一。
2.泥炭的含水性质
泥炭由于富含有机质,具分散、疏松多孔的结构,因此泥炭有吸收和保持大量水分的性能。它有湿度、持水量两种表示方法。泥炭湿度是指泥炭中含有的水分质量占泥炭总质量(干物质+水分)的百分比(%)。泥炭的持水量是指泥炭中含有的水分质量占泥炭干物质质量的百分比(%)。泥炭的含水性质与泥炭类型、泥炭形成时的水文条件有关外,还与泥炭的分解度、灰分含量、植物残体种属等有关。
3.泥炭的密度和容重
泥炭干燥时质量轻,密度、容重都较小,这是区别于其他固体可燃矿产的典型物理性质。泥炭密度一般为1.20~1.60g/cm3,藓类泥炭密度一般为1.10~1.30g/cm3,木本泥炭、草本泥炭密度稍大,为1.40~1.70g/cm3。泥炭密度大小受到矿物质含量和分解度的影响。
泥炭在自然状态下的容重称湿容重,一般为1.00~1.30g/cm3烘干或风干后的容重称干容重,一般为0.2~0.58g/cm3。
4.泥炭的结构和颜色
泥炭结构疏松、多孔,力学稳定性差,它与形成泥炭的植物种属、分解度及矿物质含量有关。例如,泥炭藓泥炭呈疏松的海绵状结构,草本泥炭一般呈纤维状结构,木本泥炭呈小块状结构等。
泥炭的颜色主要决定于形成泥炭植物种属的颜色,如泥炭藓泥炭往往保持原植物的浅黄色。泥炭的颜色随分解度的增强而变深、变暗,最终转变为腐殖质所具有的黑色。自然状态的泥炭颜色,随含水量增大而变浅。泥炭颜色亦与泥炭自生矿物的影响有关。例如,含蓝铁矿时,增加蓝色含菱铁矿时,则增加浅绿色。
5.泥炭的可燃性
泥炭中由于含有较多的有机物质,因此具有可燃性,通常以发热量来表示。泥炭有机质的元素组成、组分组成、分解度、水分及灰分等因素,都影响到泥炭发热量的高低。我国泥炭的发热量多在10~12MJ/kg,最高可超过16.5MJ/kg。
三、泥炭的类型
根据泥炭的原有植物组成,泥炭可划分为草本泥炭、木本泥炭和藓类泥炭。
草本泥炭主要是由各种草本植物残体组成的,通常以莎草科植物为主,苔草、芦苇等最为普遍,有时夹有杂草类和灰藓,一般草本植物残体的含量占泥炭全部有机残体总量的一半以上。这种泥炭的灰分含量较高,分解较强,酸碱度(pH值)为微酸到微碱性,含水量较其他泥炭少,色暗且弹性较差,我国的泥炭多属此类型。
木本泥炭主要由乔木和灌木植物的枝干、根系、果、叶等经过泥炭化作用而形成。木本植物物质残体含量占泥炭全部有机残体总量的一半以上。木本植物残体中木质素含量较多,它的分解较为缓慢,因而在泥炭化过程中,分解弱的残体往往较好地保存成碎块状,分解强的则形成碎屑状。这类泥炭的灰分含量一般比草本泥炭低,含水量少,显示红褐色,弹性差,我国有少量泥炭属于此类。
藓类泥炭主要由泥炭藓等贫营养植物残体组成,含量占全部有机残体总量的一半以上,多混夹有少量苔藓和木本植物残体。一般生成于酸性和强酸性环境,常称为酸沼。这类泥炭的灰分含量最低,含水量最高,由于分解缓慢使纤维保存较好,色淡,弹性强。我国这类泥炭极少,仅在大、小兴安岭和其他高山地带有少量分布。
以上就是关于《煤、泥炭地质勘查规范》实施后对物探规范的思考全部的内容,如果了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!